In this work, we give sufficient conditions for the almost global asymptotic stability of a cascade in which the inner loop and the unforced outer loop are each almost globally asymptotically stable. Our qualitative approach relies on the absence of chain recurrence for non-equilibrium points of the unforced outer loop, the hyperbolicity of equilibria, and the precompactness of forward trajectories. We show that the required structure of the chain recurrent set can be readily verified, and describe two important classes of systems with this property. We also show that the precompactness requirement can be verified by growth rate conditions on the interconnection term coupling the subsystems. Our results stand in contrast to prior works that require either global asymptotic stability of the subsystems (impossible for smooth systems evolving on general manifolds), time scale separation between the subsystems, or strong disturbance robustness properties of the outer loop. The approach has clear applications in stability certification of cascaded controllers for systems evolving on manifolds.
翻译:本文针对级联系统,其中内环和未受迫的外环各自几乎全局渐近稳定,给出了证明其几乎全局渐近稳定的充分条件。我们的定性方法依赖于未受迫的外环的非平衡点的链回归集的缺失、平衡点的双曲性以及前向轨迹的紧致性。我们表明,链回归集所需的结构可以轻松验证,并描述两个具有这种属性的重要系统类别。我们还表明,前向轨迹的紧致性要求可以通过耦合子系统的相互作用项的增长率条件进行验证。我们的结果与之前要求子系统的全局渐近稳定性(在一般流形上演化的光滑系统不可能)、子系统的时间尺度分离,或外环的强干扰鲁棒性属性的先前工作形成对比。本方法在证明演化在流形上的级联控制器的稳定性认证中具有明显的应用价值。