Accurate and efficient network traffic classification is important for many network management tasks, from traffic prioritization to anomaly detection. Although classifiers using pre-computed flow statistics (e.g., packet sizes, inter-arrival times) can be efficient, they may experience lower accuracy than techniques based on raw traffic, including packet captures. Past work on representation learning-based classifiers applied to network traffic captures has shown to be more accurate, but slower and requiring considerable additional memory resources, due to the substantial costs in feature preprocessing. In this paper, we explore this trade-off and develop the Adaptive Constraint-Driven Classification (AC-DC) framework to efficiently curate a pool of classifiers with different target requirements, aiming to provide comparable classification performance to complex packet-capture classifiers while adapting to varying network traffic load. AC-DC uses an adaptive scheduler that tracks current system memory availability and incoming traffic rates to determine the optimal classifier and batch size to maximize classification performance given memory and processing constraints. Our evaluation shows that AC-DC improves classification performance by more than 100% compared to classifiers that rely on flow statistics alone; compared to the state-of-the-art packet-capture classifiers, AC-DC achieves comparable performance (less than 12.3% lower in F1-Score), but processes traffic over 150x faster.
翻译:准确而高效的网络交通分类对于许多网络管理任务,从交通优先排序到异常检测等,都很重要。尽管使用预先计算流量统计的分类人员(例如,包装大小、抵达时间)效率可以提高,但他们的准确性可能低于以原始交通为基础的技术,包括包捕获。过去用于网络交通捕获的基于代表性学习的分类人员的工作显示,由于特性处理前的特性处理成本巨大,因此,其准确性能和高效的网络交通分类工作更准确,但速度更慢,需要大量额外的记忆资源。在本文中,我们探讨了这一权衡,并开发了适应性控制-驱动分类(AC-DC)框架,以便有效地整理具有不同目标要求的分类人员库,目的是向复杂的包包分类人员提供可比的分类性能,同时适应不同的网络交通负荷。AC-DC使用适应性定时器,跟踪当前的系统记忆可用性和交通量和交通量,以确定最佳的分类员和批量大小,以尽量提高分类工作绩效。我们的评价表明,AC-DC改进了分类工作业绩,超过100 %以上,而分类员则依赖不易动的A-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-仅仅仅仅取得可比较的低级)-C-C-S-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-