We develop a new framework for embedding (joint) probability distributions in tensor product reproducing kernel Hilbert spaces (RKHS). This framework accommodates a low-dimensional, positive, and normalized model of a Radon-Nikodym derivative, estimated from sample sizes of up to several million data points, alleviating the inherent limitations of RKHS modeling. Well-defined normalized and positive conditional distributions are natural by-products to our approach. The embedding is fast to compute and naturally accommodates learning problems ranging from prediction to classification. The theoretical findings are supplemented by favorable numerical results.
翻译:我们开发了一个新的框架,用于将概率分布嵌入(联合)生成内核Hilbert空间(RKHS)的高产品中。这个框架包含一个低维、正正和标准化的Radon-Nikodym衍生物模型,根据高达数百万个数据点的抽样规模估计,可以减轻RKHS建模的内在局限性。定义明确、标准化和正有条件分布是我们方法的自然副产品。嵌入快速计算并自然考虑到从预测到分类的学习问题。理论结论得到了有利的数字结果的补充。