We propose and investigate a hidden Markov model (HMM) for the analysis of aggregated, super-imposed two-state signal recordings. A major motivation for this work is that often these recordings cannot be observed individually but only their superposition. Among others, such models are in high demand for the understanding of cross-talk between ion channels, where each single channel might take two different states which cannot be measured separately. As an essential building block we introduce a parametrized vector norm dependent Markov chain model and characterize it in terms of permutation invariance as well as conditional independence. This leads to a hidden Markov chain "sum" process which can be used for analyzing aggregated two-state signal observations within a HMM. Additionally, we show that the model parameters of the vector norm dependent Markov chain are uniquely determined by the parameters of the "sum" process and are therefore identifiable. Finally, we provide algorithms to estimate the parameters and apply our methodology to real-world ion channel data measurements, where we show competitive gating.


翻译:我们建议并调查一个隐蔽的Markov模型(HMM),用于分析合并的、超硬的双状态信号记录。这项工作的一个主要动机是,这些记录往往无法单独观察到,而只是它们的叠加位置。除其他外,这些模型对于理解离子信道之间的交叉对话有着很高的需求,因为每个单一频道可能采用两个无法分别测量的不同状态。作为基本构件,我们引入了一种准美化的媒介规范依赖Markov链模型,并以变异性以及有条件的独立为特征。这导致一个隐藏的Markov链“总和”过程,可以用来分析HMM内部的两种状态的汇总信号观测。此外,我们显示,矢量规范依赖Markov链的模型参数由“总和”过程的参数决定,因此可以识别。最后,我们提供算法来估计参数,并将我们的方法应用于现实世界离子频道的数据测量,我们在那里显示竞争性的格。

0
下载
关闭预览

相关内容

隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 其是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年11月14日
Arxiv
6+阅读 · 2018年6月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员