We consider the problem of multilabel classification and investigate learnability in batch and online settings. In both settings, we show that a multilabel function class is learnable if and only if each single-label restriction of the function class is learnable. As extensions, we also study multioutput regression in the batch setting and bandit feedback in the online setting. For the former, we characterize learnability w.r.t. $L_p$ losses. For the latter, we show a similar characterization as in the full-feedback setting.
翻译:我们考虑多标签分类问题, 并调查批次和在线设置的可学习性。 在两种设置中, 我们都显示, 多标签功能类只有在功能类的每个单标签限制都可学习的情况下才能学习。 作为扩展, 我们还研究批次设置中的多输出回归和在线设置中的土匪反馈。 对于前者, 我们描述可学习性 w.r.t. $L_p$损失。 对于后者, 我们显示的特征与全速设置相似 。