Split-learning (SL) has recently gained popularity due to its inherent privacy-preserving capabilities and ability to enable collaborative inference for devices with limited computational power. Standard SL algorithms assume an ideal underlying digital communication system and ignore the problem of scarce communication bandwidth. However, for a large number of agents, limited bandwidth resources, and time-varying communication channels, the communication bandwidth can become the bottleneck. To address this challenge, in this work, we propose a novel SL framework to solve the remote inference problem that introduces an additional layer at the agent side and constrains the choices of the weights and the biases to ensure over the air aggregation. Hence, the proposed approach maintains constant communication cost with respect to the number of agents enabling remote inference under limited bandwidth. Numerical results show that our proposed algorithm significantly outperforms the digital implementation in terms of communication-efficiency, especially as the number of agents grows large.


翻译:标准 SL 算法假设了理想的数码通信基础系统,忽视了通信带宽稀缺的问题,然而,对于大量的代理商、有限的带宽资源和时间变化的通信渠道而言,通信带宽可能成为瓶颈。为了应对这一挑战,我们在这项工作中提出了一个新的 SL 框架,以解决远程推论问题,在代理商方面增加了一层层,并限制重量的选择和偏见,以确保航空总合。因此,拟议方法保持了在有限带宽下进行远程推论的代理商数量方面的持续通信成本。数字结果显示,我们提议的算法在通信效率方面大大超过数字实施,特别是随着代理商数量的增加。

0
下载
关闭预览

相关内容

清华大学智能产业研究院(AIR)招聘深度强化方向的本科/硕士/博士实习生,主要研究方向侧重前沿 offline RL/multi-agent RL 算法研究及转化落地。团队同时注重与行业头部企业密切协作,赋能相应产业,实现高水平的产学研转化。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员