We study a distributed machine learning problem carried out by an edge server and multiple agents in a wireless network. The objective is to minimize a global function that is a sum of the agents' local loss functions. And the optimization is conducted by analog over-the-air model training. Specifically, each agent modulates its local gradient onto a set of waveforms and transmits to the edge server simultaneously. From the received analog signal the edge server extracts a noisy aggregated gradient which is distorted by the channel fading and interference, and uses it to update the global model and feedbacks to all the agents for another round of local computing. Since the electromagnetic interference generally exhibits a heavy-tailed intrinsic, we use the $\alpha$-stable distribution to model its statistic. In consequence, the global gradient has an infinite variance that hinders the use of conventional techniques for convergence analysis that rely on second-order moments' existence. To circumvent this challenge, we take a new route to establish the analysis of convergence rate, as well as generalization error, of the algorithm. Our analyses reveal a two-sided effect of the interference on the overall training procedure. On the negative side, heavy tail noise slows down the convergence rate of the model training: the heavier the tail in the distribution of interference, the slower the algorithm converges. On the positive side, heavy tail noise has the potential to increase the generalization power of the trained model: the heavier the tail, the better the model generalizes. This perhaps counterintuitive conclusion implies that the prevailing thinking on interference -- that it is only detrimental to the edge learning system -- is outdated and we shall seek new techniques that exploit, rather than simply mitigate, the interference for better machine learning in wireless networks.


翻译:我们研究的是由边缘服务器和无线网络中多个代理商进行的分布式机器学习问题。 目标是将全球功能最小化, 即代理商本地损失功能的总和。 而优化则通过模拟超空模型培训进行。 具体地说, 每个代理商将其本地梯度调整成一组波形, 并同时传送到边缘服务器。 从接收的模拟信号, 边缘服务器提取了一个被频道消退和干扰扭曲的杂乱的汇总梯度, 并用它来更新全球模型和所有代理商的反馈, 用于另一轮本地计算。 由于电磁干扰一般表现为严重尾部干扰, 我们使用美元- 平坦的分布以模拟为模型。 最坏的电路路路变变变变, 重的电流变整, 重的电流变整, 更慢的电流变整, 重的电算法变整的变整, 重的变整的系统变整。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
因果推断,Causal Inference:The Mixtape
专知会员服务
104+阅读 · 2021年8月27日
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
24+阅读 · 2021年1月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Revisiting Driver Anonymity in ORide
Arxiv
0+阅读 · 2021年9月23日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员