We study over-the-air model aggregation in federated edge learning (FEEL) systems, where channel state information at the transmitters (CSIT) is assumed to be unavailable. We leverage the reconfigurable intelligent surface (RIS) technology to align the cascaded channel coefficients for CSIT-free model aggregation. To this end, we jointly optimize the RIS and the receiver by minimizing the aggregation error under the channel alignment constraint. We then develop a difference-of-convex algorithm for the resulting non-convex optimization. Numerical experiments on image classification show that the proposed method is able to achieve a similar learning accuracy as the state-of-the-art CSIT-based solution, demonstrating the efficiency of our approach in combating the lack of CSIT.


翻译:我们研究联邦边际学习(FEEL)系统中的超空模型汇总,其中假设发射机的频道状态信息不存在。我们利用可重新配置的智能表面(RIS)技术来调整CSIT无模型汇总的级联通道系数。为此,我们通过在频道对齐限制下尽量减少集合错误,共同优化RIS和接收器。然后,我们为由此产生的非电离层优化开发了一种电流差异算法。关于图像分类的数值实验显示,拟议方法能够达到类似于CSIT最新解决方案的学习准确性,显示了我们应对缺乏CSIT的效率。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员