We study over-the-air model aggregation in federated edge learning (FEEL) systems, where channel state information at the transmitters (CSIT) is assumed to be unavailable. We leverage the reconfigurable intelligent surface (RIS) technology to align the cascaded channel coefficients for CSIT-free model aggregation. To this end, we jointly optimize the RIS and the receiver by minimizing the aggregation error under the channel alignment constraint. We then develop a difference-of-convex algorithm for the resulting non-convex optimization. Numerical experiments on image classification show that the proposed method is able to achieve a similar learning accuracy as the state-of-the-art CSIT-based solution, demonstrating the efficiency of our approach in combating the lack of CSIT.
翻译:我们研究联邦边际学习(FEEL)系统中的超空模型汇总,其中假设发射机的频道状态信息不存在。我们利用可重新配置的智能表面(RIS)技术来调整CSIT无模型汇总的级联通道系数。为此,我们通过在频道对齐限制下尽量减少集合错误,共同优化RIS和接收器。然后,我们为由此产生的非电离层优化开发了一种电流差异算法。关于图像分类的数值实验显示,拟议方法能够达到类似于CSIT最新解决方案的学习准确性,显示了我们应对缺乏CSIT的效率。