Cooperative Adaptive Cruise Control (CACC) is a promising technology that allows groups of vehicles to form in automated tightly-coupled platoons. CACC schemes exploit Vehicle-to-Vehicle (V2V) wireless communications to exchange kinematic information among adjacent vehicles. However, the use of communication networks brings security concerns as cyberattacks could access the vehicles' internal networks and computers to disrupt their operation and even cause crashes. In this manuscript, we present a sensitivity analysis of standard CACC schemes against a class of resource-limited attacks. We present a modelling framework that allows us to systematically compute outer ellipsoidal approximations of reachable sets induced by attacks. We use the size of these sets as a security metric to quantify the potential damage of attacks entering the dynamics at different points and study how two key system parameters (sampling and headway constant) change these metrics. We carry out the latter sensitivity analysis for two different controller implementations (as given the available sensors there is an infinite number of realizations of the same controller) and show how different implementations can significantly affect the impact of attacks. We present extensive simulation experiments to illustrate our ideas.


翻译:合作自适应巡航控制(CACC)是一种有前途的技术,允许车辆组成自动化的緊密耦合车队。 CACC方案利用车辆间的无线通信(V2V)交换相邻车辆之间的运动信息。 然而,使用通信网络会带来安全问题,因为网络攻击可能访问车辆的内部网络和计算机以破坏它们的操作并甚至导致事故。 在本文中,我们针对一类资源受限的攻击对标准CACC方案进行灵敏度分析。 我们提出了一个建模框架,使我们能够系统地计算由攻击引起的可达集的外椭球近似。 我们使用这些集合的大小作为安全度量来量化攻击的潜在损害,并研究两个关键系统参数(采样和车头间距常数)如何改变这些指标。 我们针对两种不同的控制器实现进行后一灵敏度分析(由于可用传感器的给定,相同的控制器有无限的实现方式),并展示不同的实现方式如何显着影响攻击的影响。 我们进行了广泛的仿真实验以说明我们的想法。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
VIP会员
相关VIP内容
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员