The classical Cheeger's inequality relates the edge conductance $\phi$ of a graph and the second smallest eigenvalue $\lambda_2$ of the Laplacian matrix. Recently, Olesker-Taylor and Zanetti discovered a Cheeger-type inequality $\psi^2 / \log |V| \lesssim \lambda_2^* \lesssim \psi$ connecting the vertex expansion $\psi$ of a graph $G=(V,E)$ and the maximum reweighted second smallest eigenvalue $\lambda_2^*$ of the Laplacian matrix. In this work, we first improve their result to $\psi^2 / \log d \lesssim \lambda_2^* \lesssim \psi$ where $d$ is the maximum degree in $G$, which is optimal assuming the small-set expansion conjecture. Also, the improved result holds for weighted vertex expansion, answering an open question by Olesker-Taylor and Zanetti. Building on this connection, we then develop a new spectral theory for vertex expansion. We discover that several interesting generalizations of Cheeger inequalities relating edge conductances and eigenvalues have a close analog in relating vertex expansions and reweighted eigenvalues. These include an analog of Trevisan's result on bipartiteness, an analog of higher order Cheeger's inequality, and an analog of improved Cheeger's inequality. Finally, inspired by this connection, we present negative evidence to the $0/1$-polytope edge expansion conjecture by Mihail and Vazirani. We construct $0/1$-polytopes whose graphs have very poor vertex expansion. This implies that the fastest mixing time to the uniform distribution on the vertices of these $0/1$-polytopes is almost linear in the graph size. This does not provide a counterexample to the conjecture, but this is in contrast with known positive results which proved poly-logarithmic mixing time to the uniform distribution on the vertices of subclasses of $0/1$-polytopes.


翻译:古典Cheeger 的不平等性与一个图形的顶端导电 $\ psopo美元 和第二个最小的顶端导电量 $0 lambda_ 2美元 拉普拉西亚矩阵。 最近, Olesker- Taylor 和Zanetti 发现了一个Cheeger 类型的不平等 $\ psi2 / log ⁇ { { { { { { { { { { { { { { { { { { { \ { { { { { { { { { { { { { { { } { { { { { { { { { { { { { { { { { { }\ psmspi } } } 有关 。 。 美元最大一 美元, 美元, 美元 美元 美元 美元 的底部的比 ==( V, E) ex) r) ylationlationlationlationlationlationlationlationlationlation 。

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月20日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员