In this paper, we consider recent progress in estimating the average treatment effect when extreme inverse probability weights are present and focus on methods that account for a possible violation of the positivity assumption. These methods aim at estimating the treatment effect on the subpopulation of patients for whom there is a clinical equipoise. We propose a systematic approach to determine their related causal estimands and develop new insights into the properties of the weights targeting such a subpopulation. Then, we examine the roles of overlap weights, matching weights, Shannon's entropy weights, and beta weights. This helps us characterize and compare their underlying estimators, analytically and via simulations, in terms of the accuracy, precision, and root mean squared error. Moreover, we study the asymptotic behaviors of their augmented estimators (that mimic doubly robust estimators), which lead to improved estimations when either the propensity or the regression models are correctly specified. Based on the analytical and simulation results, we conclude that overall overlap weights are preferable to matching weights, especially when there is moderate or extreme violations of the positivity assumption. Finally, we illustrate the methods using a real data example marked by extreme inverse probability weights.


翻译:在本文中,我们考虑当极反概率加权出现时,在估计平均治疗效果方面的最新进展,并侧重于说明可能违反假定假设的方法。这些方法旨在估计临床设备对病人的子人口构成的治疗影响。我们提出系统的方法,以确定其相关的因果估计值,并针对这种子人口对加权值的属性形成新的洞察力。然后,我们研究重重重叠、匹配重量、香农的酶重量和贝塔重量的作用。这帮助我们从精确度、精确度和根正方位偏差的角度,从分析角度和模拟角度,辨别和比较其基本估计值;此外,我们研究其扩大估计值(即加倍加固度估计值)的无损行为,从而在正确指定偏重度或回归模型时,改进估计值。根据分析和模拟结果,我们的结论是,总体重叠重量比重量的重量要好,特别是在有中度或极端度的偏重度假设时。最后,我们用真实概率的典型方法说明。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员