We consider the noisy matrix sensing problem in the over-parameterization setting, where the estimated rank $r$ is larger than the true rank $r_\star$. Specifically, our main objective is to recover a matrix $ X_\star \in \mathbb{R}^{n_1 \times n_2} $ with rank $ r_\star $ from noisy measurements using an over-parameterized factorized form $ LR^\top $, where $ L \in \mathbb{R}^{n_1 \times r}, \, R \in \mathbb{R}^{n_2 \times r} $ and $ \min\{n_1, n_2\} \ge r > r_\star $, with the true rank $ r_\star $ being unknown. Recently, preconditioning methods have been proposed to accelerate the convergence of matrix sensing problem compared to vanilla gradient descent, incorporating preconditioning terms $ (L^\top L + \lambda I)^{-1} $ and $ (R^\top R + \lambda I)^{-1} $ into the original gradient. However, these methods require careful tuning of the damping parameter $\lambda$ and are sensitive to initial points and step size. To address these limitations, we propose the alternating preconditioned gradient descent (APGD) algorithm, which alternately updates the two factor matrices, eliminating the need for the damping parameter and enabling faster convergence with larger step sizes. We theoretically prove that APGD achieves near-optimal error convergence at a linear rate, starting from arbitrary random initializations. Through extensive experiments, we validate our theoretical results and demonstrate that APGD outperforms other methods, achieving the fastest convergence rate. Notably, both our theoretical analysis and experimental results illustrate that APGD does not rely on the initialization procedure, making it more practical and versatile.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员