Metamodels, or the regression analysis of Monte Carlo simulation (MCS) results, provide a powerful tool to summarize MCS findings. However, an as of yet unexplored approach is the use of multilevel metamodels (MLMM) that better account for the dependent data structure of MCS results that arises from fitting multiple models to the same simulated data set. In this study, we articulate the theoretical rationale for the MLMM and illustrate how it can dramatically improve efficiency over the traditional regression approach, better account for complex MCS designs, and provide new insights into the generalizability of MCS findings.
翻译:暂无翻译