We propose a kernel machine based hypothesis testing procedure in nonlinear function-on-scalar regression model. Our research is motivated by the Newborn Epigenetic Study (NEST) where the question of interest is whether a pre-specified group of toxic metals or methylation at any of 9 differentially methylated regions (DMRs) is associated with child growth. We take the child growth trajectory as the functional response, and model the toxic metal measurements jointly using a nonlinear function. We use a kernel machine approach to model the unknown function and transform the hypothesis of no effect to an appropriate variance component test. We demonstrate our proposed methodology using a simulation study and by applying it to analyze the NEST data.


翻译:我们提议在非线性函数在天际上回归模型中采用内核机的假设测试程序。我们的研究受新生的神经基因研究(NEST)的驱动,该研究的问题是,在9个不同甲基区域中,任何1个预先指定的有毒金属或甲基化是否与儿童生长有关。我们把儿童生长轨迹作为功能反应,用非线性函数共同模拟有毒金属测量。我们用内核机法模拟未知的功能,并将无效的假设转换为适当的差异组成部分测试。我们用模拟研究来展示我们提出的方法,并应用它来分析 NEST数据。

0
下载
关闭预览

相关内容

【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年9月2日
Arxiv
0+阅读 · 2021年8月31日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员