This paper is an extension of the work about the exponential increase of the power of two non-parametric tests: the $ Z $-test and the chi-square goodness-of-fit test. Subject to having auxiliary information, it is possible to improve exponentially relative to the size of the sample the power of the famous chi-square tests of independence and homogeneity. Improving the power of these statistical tests by using auxiliary information makes it possible either to reduce the probability of accepting the null hypothesis under the alternative hypothesis, or to reduce the size of the sample necessary to reach a predefined power. The suggested method is computational and some simple statistical applications are presented to illustrate these results. The framework of this work is non-parametric, so it can be applied to any kind of data and any area using statistics.
翻译:本文扩展了关于两个非参数测试功率指数增长的工作范围:Z美元测试和奇夸尔健康测试。如果有辅助信息,就有可能根据样本的大小指数性地提高著名的奇夸尔独立和同质测试的功率。通过使用辅助信息提高这些统计测试的功率,可以降低接受替代假设下的无效假设的可能性,或者缩小达到预定功率所需的样品的体积。建议的方法是计算性的,并提出了一些简单的统计应用来说明这些结果。这项工作的框架是非参数的,因此可以适用于任何类型的数据和任何使用统计数据的领域。