We develop a fully Bayesian nonparametric regression model based on a L\'evy process prior named MLABS (Multivariate L\'evy Adaptive B-Spline regression) model, a multivariate version of the LARK (L\'evy Adaptive Regression Kernels) models, for estimating unknown functions with either varying degrees of smoothness or high interaction orders. L\'evy process priors have advantages of encouraging sparsity in the expansions and providing automatic selection over the number of basis functions. The unknown regression function is expressed as a weighted sum of tensor product of B-spline basis functions as the elements of an overcomplete system, which can deal with multi-dimensional data. The B-spline basis can express systematically functions with varying degrees of smoothness. By changing a set of degrees of the tensor product basis function, MLABS can adapt the smoothness of target functions due to the nice properties of B-spline bases. The local support of the B-spline basis enables the MLABS to make more delicate predictions than other existing methods in the two-dimensional surface data. Experiments on various simulated and real-world datasets illustrate that the MLABS model has comparable performance on regression and classification problems. We also show that the MLABS model has more stable and accurate predictive abilities than state-of-the-art nonparametric regression models in relatively low-dimensional data.


翻译:我们以L\'evy 进程为基础,开发了完全Bayesian非参数回归模型,其依据是以前命名的LALBS(Multiriate L\'evy Adeptive B-Spline Regepation B-Spline Regain)模型的多变版模型,即LARK(L\'evy Refandive Regrestions Kernels)模型的多变式版本,用以估计具有不同平滑度或高度互动命令的未知功能。L\'evy 进程前的优点在于鼓励扩张的偏移,并为基础功能的数量提供自动选择。未知的回归函数表现为B-spline基础功能作为超全系统元素的超导产物,作为超全系统的元素,可以处理多维数据。BS-spline基础可以以不同程度的平滑滑滑滑滑度表示系统性功能。通过改变数度产品基函数的一组度,可以调整目标功能的平滑度,因为BS-spline基础基础的优点。 BS-spline基础的当地支持使得ALBS比二维的模型的非基基础功能基础函数函数函数函数函数功能的超过其他现有模型中的其他方法,而进行更微妙的推估性预测。我们在基础的模型的模型的模型中,我们在可比较的BSBSlim基数级模型的精确的精确性数据实验性数据在模型中也显示了可比较性数据。

0
下载
关闭预览

相关内容

MIT最新《贝叶斯深度学习》综述论文,37页pdf
专知会员服务
50+阅读 · 2021年1月4日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
一文看懂YOLOv5(含网络结构)
CVer
18+阅读 · 2020年8月12日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月20日
Arxiv
0+阅读 · 2021年10月16日
Bivariate Beta LSTM
Arxiv
5+阅读 · 2019年10月7日
VIP会员
相关资讯
一文看懂YOLOv5(含网络结构)
CVer
18+阅读 · 2020年8月12日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
Top
微信扫码咨询专知VIP会员