This paper uses model symmetries in the instrumental variable (IV) regression to derive an invariant test for the causal structural parameter. Contrary to popular belief, we show that there exist model symmetries when equation errors are heteroskedastic and autocorrelated (HAC). Our theory is consistent with existing results for the homoskedastic model (Andrews, Moreira, and Stock (2006) and Chamberlain (2007)). We use these symmetries to propose the conditional integrated likelihood (CIL) test for the causality parameter in the over-identified model. Theoretical and numerical findings show that the CIL test performs well compared to other tests in terms of power and implementation. We recommend that practitioners use the Anderson-Rubin (AR) test in the just-identified model, and the CIL test in the over-identified model.
翻译:本文使用工具变量(IV)回归中的模型对称性来得出因果结构参数的变数测试。 与流行的信念相反,我们显示,当方程式错误是异方形和与自动相关(HAC)时,存在模型对称性。 我们的理论与当前对立型(Andrews, Moreira, Stock(2006)和Chamberlain(2007年))的结果是一致的。 我们用这些对称性来提议对超标模型的因果关系参数进行有条件的综合概率(CIL)测试。 理论和数字调查结果表明,CIL测试与其他测试相比,在权力和执行方面表现良好。 我们建议从业者在刚刚确定的模型中使用Anderson-Rubin(AR)测试,在超标模型中使用CIL测试。