The optimal moment to start renal replacement therapy in a patient with acute kidney injury (AKI) remains a challenging problem in intensive care nephrology. Multiple randomised controlled trials have tried to answer this question, but these can, by definition, only analyse a limited number of treatment initiation strategies. In view of this, we use routinely collected observational data from the Ghent University Hospital intensive care units (ICUs) to investigate different pre-specified timing strategies for renal replacement therapy initiation based on time-updated levels of serum potassium, pH and fluid balance in critically ill patients with AKI with the aim to minimize 30-day ICU mortality. For this purpose, we apply statistical techniques for evaluating the impact of specific dynamic treatment regimes in the presence of ICU discharge as a competing event. We discuss two approaches, a non-parametric one - using an inverse probability weighted Aalen-Johansen estimator - and a semiparametric one - using dynamic-regime marginal structural models. Furthermore, we suggest an easy to implement cross-validation technique that can be used for the out-of-sample performance assessment of the optimal dynamic treatment regime. Our work illustrates the potential of data-driven medical decision support based on routinely collected observational data.
翻译:在急性肾损伤患者(AKI)开始肾脏重置疗法的最佳时机仍然是重症监护肾脏病患者的一个棘手问题。多重随机控制的试验试图回答这个问题,但根据定义,这些试验只能分析数量有限的治疗启动战略。有鉴于此,我们使用从根特大学医院医院重症护理单位(ICUs)定期收集的观察数据,调查基于时间更新的血清钾、pH值和患有AKI重病病人的液体平衡而启动肾脏替代疗法的不同预定时间战略,以便尽量减少30天的ICU死亡率。为此目的,我们运用统计技术评估特定动态治疗制度在ICU出院时作为相互竞争的事件的影响。我们讨论两种方法,一种非参数方法,即使用反概率加权的Aalen-Johansen估计器,一种半参数,使用动态边缘结构模型。此外,我们建议易于采用交叉验证技术,用于外部观测,以便尽可能减少ICU的死亡率。我们用统计技术来评估特定动态治疗制度的影响。我们讨论了一种非参数方法,即使用一种不合理偏差的Aalen-Johansen estat estal atestal dromagration production sal pal productioning.