Cooperation in multi-agent and multi-robot systems can help agents build various formations, shapes, and patterns presenting corresponding functions and purposes adapting to different situations. Relationships between agents such as their spatial proximity and functional similarities could play a crucial role in cooperation between agents. Trust level between agents is an essential factor in evaluating their relationships' reliability and stability, much as people do. This paper proposes a new model called Relative Needs Entropy (RNE) to assess trust between robotic agents. RNE measures the distance of needs distribution between individual agents or groups of agents. To exemplify its utility, we implement and demonstrate our trust model through experiments simulating a heterogeneous multi-robot grouping task in a persistent urban search and rescue mission consisting of tasks at two levels of difficulty. The results suggest that RNE trust-Based grouping of robots can achieve better performance and adaptability for diverse task execution compared to the state-of-the-art energy-based or distance-based grouping models.


翻译:多试剂和多机器人系统的合作可以帮助代理商建立各种结构、形状和模式,显示相应的功能和目的,以适应不同情况。代理商之间的关系,如空间相近性和功能相似性,可以在代理商之间的合作中发挥关键作用。代理商之间的信任水平是评价其关系可靠性和稳定性的重要因素,与人一样。本文件提出了一个新的模型,称为相对需要 Entropy(RNE),用以评估机器人代理商之间的信任。RNE衡量个体代理商或代理商团体之间需求分布的距离。为展示其效用,我们通过实验模拟由两种困难级别的任务组成的长期城市搜索和救援任务中的多元多机器人组合任务来实施和展示我们的信任模式。结果显示,RNE基于信任的机器人组合可以实现更好的性能和适应性,与最先进的基于能源或远程的组合模式相比,执行不同的任务。

0
下载
关闭预览

相关内容

《行为与认知机器人学》,241页pdf
专知会员服务
54+阅读 · 2021年4月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月18日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员