We propose TAMER, a Test-time Adaptive MoE-driven framework for Electronic Health Record (EHR) Representation learning. TAMER introduces a framework where a Mixture-of-Experts (MoE) architecture is co-designed with Test-Time Adaptation (TTA) to jointly mitigate the intertwined challenges of patient heterogeneity and distribution shifts in EHR modeling. The MoE focuses on latent patient subgroups through domain-aware expert specialization, while TTA enables real-time adaptation to evolving health status distributions when new patient samples are introduced. Extensive experiments across four real-world EHR datasets demonstrate that TAMER consistently improves predictive performance for both mortality and readmission risk tasks when combined with diverse EHR modeling backbones. TAMER offers a promising approach for dynamic and personalized EHR-based predictions in practical clinical settings.
翻译:暂无翻译