We consider a Hamiltonian decomposition problem of partitioning a regular graph into edge-disjoint Hamiltonian cycles. It is known that verifying vertex non-adjacency in the 1-skeleton of the symmetric and asymmetric traveling salesperson polytopes is NP-complete. On the other hand, a sufficient condition for two vertices to be non-adjacent can be formulated as a combinatorial problem of finding a second Hamiltonian decomposition of a 4-regular multigraph. We present two backtracking algorithms for constructing a second Hamiltonian decomposition and verifying vertex non-adjacency: an algorithm based on a simple path extension and an algorithm based on the chain edge fixing procedure. Based on the results of computational experiments for undirected multigraphs, both backtracking algorithms lost to the known general variable neighborhood search heuristics. However, for directed multigraphs, the algorithm based on chain fixing of edges showed results comparable to heuristics on instances with an existing solution and better results on infeasible instances where the Hamiltonian decomposition does not exist.
翻译:我们认为汉密尔顿的分解问题是将正态图分解成半断断裂的汉密尔顿周期的问题。 众所周知, 核实对称和不对称旅行销售人员多面体的1- sketon 1 - skeleton 的脊椎不相邻性是已完成的。 另一方面, 使两个脊椎不相邻的充分条件, 可以被确定为找到第二个四分形多面体的汉密尔顿分解的组合问题。 我们为建造第二个汉密尔顿分解和核实脊椎不相邻性提出了两种反跟踪算法: 一种基于简单路径扩展的算法和基于链边缘固定程序的算法。 基于非定向多面图的计算实验结果, 这两种反向算法都丢失在已知的可变一般社区搜索超度中。 但是, 对于直接的多面图, 以链定边缘线为基础的算法显示的结果可以与汉密尔顿分解法相比, 而在汉密尔密尔顿分解不存在的不存在的不相容的例子上的结果更好。