We consider the problem of solving LP relaxations of MAP-MRF inference problems, and in particular the method proposed recently in (Swoboda, Kolmogorov 2019; Kolmogorov, Pock 2021). As a key computational subroutine, it uses a variant of the Frank-Wolfe (FW) method to minimize a smooth convex function over a combinatorial polytope. We propose an efficient implementation of this subproutine based on in-face Frank-Wolfe directions, introduced in (Freund et al. 2017) in a different context. More generally, we define an abstract data structure for a combinatorial subproblem that enables in-face FW directions, and describe its specialization for tree-structured MAP-MRF inference subproblems. Experimental results indicate that the resulting method is the current state-of-art LP solver for some classes of problems.
翻译:我们考虑了解决LP放松MAP-MRF推论问题的问题,特别是最近在(Swoboda, Kolmogorov 2019; Kolmogorov, Pock 2021)中提出的方法。作为一个关键的计算子例程,它使用Frank-Wolfe (FW) 方法的变体,将组合式多管区上平滑的二次曲线功能降到最低程度。我们建议根据(Freund等人, 2017年)在不同背景下引入的(Freund等人, 2017年)的面部Frank-Wolfe 方向,高效地实施这一子体。更一般地说来,我们为组合式子问题定义一个抽象的数据结构,使FW方向成为可能,并描述其对树结构的MAP-MRF的推断分题的专门性。实验结果表明,由此产生的方法是某些类别问题的当前最先进的LP解决办法。