In the rank-constrained optimization problem (RCOP), it minimizes a linear objective function over a prespecified closed rank-constrained domain set and $m$ generic two-sided linear matrix inequalities. Motivated by the Dantzig-Wolfe (DW) decomposition, a popular approach of solving many nonconvex optimization problems, we investigate the strength of DW relaxation (DWR) of the RCOP, which admits the same formulation as RCOP except replacing the domain set by its closed convex hull. Notably, our goal is to characterize conditions under which the DWR matches RCOP for any m two-sided linear matrix inequalities. From the primal perspective, we develop the first-known simultaneously necessary and sufficient conditions that achieve: (i) extreme point exactness -- all the extreme points of the DWR feasible set belong to that of the RCOP; (ii) convex hull exactness -- the DWR feasible set is identical to the closed convex hull of RCOP feasible set; and (iii) objective exactness -- the optimal values of the DWR and RCOP coincide. The proposed conditions unify, refine, and extend the existing exactness results in the quadratically constrained quadratic program (QCQP) and fair unsupervised learning. These conditions can be very useful to identify new results, including the extreme point exactness for a QCQP problem that admits an inhomogeneous objective function with two homogeneous two-sided quadratic constraints and the convex hull exactness for fair SVD.


翻译:在受排层限制的优化问题(RCOP)中,它尽量减少了预先确定的固定的受排层限制域和一般平面双面线性矩阵不平等的线性目标功能。在Dantzig-Wolfe(DW)分解的激励下,我们研究了RCOPDW放松(DWW)的力度,这与RCOP的封闭的螺旋轮体设定的域相同,但替代其封闭的螺旋体设定的域。值得注意的是,我们的目标是确定DWE与RCOP匹配双面线性矩阵不平等的条件。从原始角度看,我们开发了第一个同时已知的既必要又充分的条件,从而实现:(一) 极端准确性 -- -- DWE(DW) 可行的组合的所有极端点都属于RCOP;(二) convex船体精确性 -- -- DRWE(D) 可行的组合与关闭的螺旋体软体结构设置相同的公式;以及(三) 客观精确性精确性 -- -- DWRW和RCOP的任何双面线性线性矩阵性矩阵的优化值。拟议的Q 目标性、精度、精度、精度、精度、精度、精度、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性能、精确性、精确性、精确性、精确性、精确性、精确性、精确性、QQQQQ-Q-定、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On the Fusion Strategies for Federated Decision Making
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员