Problems related to wavelength assignment (WA) in optical communications networks involve allocating transmission wavelengths for known transmission paths between nodes that minimize a certain objective function, for example, the total number of wavelengths. Playing a central role in modern telecommunications, this problem belongs to NP-complete class for a general case, so that obtaining optimal solutions for industry relevant cases is exponentially hard. In this work, we propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem. We propose an advanced embedding procedure for this problem into the quadratic unconstrained binary optimization (QUBO) form having an improvement in the number of iterations with price-to-pay being a slight increase in the number of variables ("spins"). Then we compare a quantum-inspired technique for solving the corresponding QUBO form against classical heuristic and industrial combinatorial solvers. The obtained numerical results indicate on an advantage of the quantum-inspired approach in a substantial number of test cases against the industrial combinatorial solver that works in the standard setting. Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications and open a perspective for the further analysis of the employ of quantum computing devices.
翻译:在光学通信网络中,与波长分配有关的问题涉及将传输波长分配到已知的节点之间的传输路径,以尽量减少某种客观功能,例如波长的总数。在现代电信中,这个问题是一个中心角色。在一般情况下,这个问题属于NP-完整类,因此,为工业相关案例获得最佳解决办法的方法是巨大的。在这项工作中,我们提出并开发了一种量子驱动算法,以解决波长分配问题。我们提议了一种先进的将这一问题嵌入四边式未受限制的二进制优化(QUBO)形式的程序,使迭代数有所改进,而从价格到工资的变数略有增加。然后,我们比较了一种量子驱动技术,用以解决相应的QUBO形式与古典的超脂和工业梳理解器之间的最佳解决办法。我们获得的数字结果表明,在对标准环境下的工业组合处理器(QUBO)进行的大量测试案例中,量激励了这一问题的优点。我们的结果为在实际的电信中进一步使用开源算器分析,从而利用开源的算法。