We demonstrate that challenging shortest path problems can be solved via direct spline regression from a neural network, trained in an unsupervised manner (i.e. without requiring ground truth optimal paths for training). To achieve this, we derive a geometry-dependent optimal cost function whose minima guarantees collision-free solutions. Our method beats state-of-the-art supervised learning baselines for shortest path planning, with a much more scalable training pipeline, and a significant speedup in inference time.
翻译:我们证明挑战性最短路径问题可以通过不受监督地(即不需要地面真相最佳培训路径)从神经网络直接滑动回归来解决。 为了实现这一目标,我们得出了一个依赖几何的最佳成本功能,其迷你功能保证了无碰撞解决方案。 我们的方法比最先进的有监督的学习基线更短路径规划,拥有更可扩缩的培训管道,以及更快速的推论时间。