Insects as pollinators play a key role in ecosystem management and world food production. However, insect populations are declining, calling for a necessary global demand of insect monitoring. Existing methods analyze video or time-lapse images of insects in nature, but the analysis is challenging since insects are small objects in complex and dynamic scenes of natural vegetation. The current paper provides a dataset of primary honeybees visiting three different plant species during two months of summer-period. The dataset consists of more than 700,000 time-lapse images from multiple cameras, including more than 100,000 annotated images. The paper presents a new method pipeline for detecting insects in time-lapse RGB-images. The pipeline consists of a two-step process. Firstly, the time-lapse RGB-images are preprocessed to enhance insects in the images. We propose a new prepossessing enhancement method: Motion-Informed-enhancement. The technique uses motion and colors to enhance insects in images. The enhanced images are subsequently fed into a Convolutional Neural network (CNN) object detector. Motion-Informed-enhancement improves the deep learning object detectors You Only Look Once (YOLO) and Faster Region-based Convolutional Neural Networks (Faster R-CNN). Using Motion-Informed-enhancement the YOLO-detector improves average micro F1-score from 0.49 to 0.71, and the Faster R-CNN-detector improves average micro F1-score from 0.32 to 0.56 on the our dataset. Our datasets are published on: https://vision.eng.au.dk/mie/
翻译:昆虫作为授粉者在生态系统管理和世界粮食生产中发挥着关键作用。 然而,昆虫数量正在减少, 需要全球对昆虫进行监测。 现有的方法分析昆虫的视频或时落图像, 但分析具有挑战性, 因为昆虫在自然植被的复杂和动态场景中是小物体。 本文提供了一组原始蜜蜂在夏季两个月内访问三个不同的植物物种的数据集。 数据集由多个摄像头的700,000多个时落图像组成, 包括100,000多张附加说明的图像。 本文展示了在时间流转 RGB- image 中检测昆虫的新方法。 管道由两步过程组成。 首先, 时间衰落 RGB 图像被预先处理, 以强化图像中的昆虫。 技术使用运动和颜色来增强图像中的昆虫。 增强的图像随后被反馈到一个基于Centalalal- cilentrial 网络 。 改进了RGB- NDE1 和升级 改进了我们OOL 上的最新数据 。 改进了我们OILO Ameral- restal 。 改进了我们OLO