We propose straightforward nonparametric estimators for the mean and the covariance functions of functional data. Our setup covers a wide range of practical situations. The random trajectories are, not necessarily differentiable, have unknown regularity, and are measured with error at discrete design points. The measurement error could be heteroscedastic. The design points could be either randomly drawn or common for all curves. The definition of our nonparametric estimators depends on the local regularity of the stochastic process generating the functional data. We first propose a simple estimator of this local regularity which takes strength from the replication and regularization features of functional data. Next, we use the "smoothing first, then estimate" approach for the mean and the covariance functions. The new nonparametric estimators achieve optimal rates of convergence. They can be applied with both sparsely or densely sampled curves, are easy to calculate and to update, and perform well in simulations. Simulations built upon a real data example on household power consumption illustrate the effectiveness of the new approach.
翻译:我们为功能数据的中值和共变量功能提出了直截了当的非参数估计值。 我们的设置涵盖了广泛的实际情况。 随机的轨迹不一定不同, 具有未知的规律性, 并在离散的设计点用错误测量。 测量错误可以是偏观性。 设计点可以是随机绘制的, 也可以是所有曲线的常见点。 我们的非参数估计值的定义取决于生成功能数据的随机过程的当地规律性。 我们首先建议对本地规律性进行简单的估计, 以功能数据的复制和正规化特性为根据。 下一步, 我们用“ 先移动, 然后估计” 的方法来测量平均值和共变函数。 新的非对称估计值达到最佳的趋同率。 新的非对称估计值既可以随机抽取,也可以集中的曲线, 很容易计算, 更新, 并在模拟中很好地进行。 以家庭功率的实际数据示例为基础, 模拟了新方法的效果。