We consider the problem of making inference about the population outcome mean of an outcome variable subject to nonignorable missingness. By leveraging a so-called shadow variable for the outcome, we propose a novel condition that ensures nonparametric identification of the outcome mean, although the full data distribution is not identified. The identifying condition requires the existence of a function as a solution to a representer equation that connects the shadow variable to the outcome mean. Under this condition, we use sieves to nonparametrically solve the representer equation and propose an estimator which avoids modeling the propensity score or the outcome regression. We establish the asymptotic properties of the proposed estimator. We also show that the estimator is locally efficient and attains the semiparametric efficiency bound for the shadow variable model under certain regularity conditions. We illustrate the proposed approach via simulations and a real data application on home pricing.
翻译:我们考虑了对结果变量的人口结果值进行推断的问题,该结果变量不值得忽略。通过利用所谓的结果阴影变量,我们提出了一个新条件,确保结果结果值的非参数性识别,尽管没有确定全部数据分布。确定条件要求存在一个函数,作为代表方方程式的解决方案,将阴影变量与结果值联系起来。在此条件下,我们使用比方,以非对称方式解决代表方程,并提议一个估计方程式,避免模拟常态分数或结果回归。我们建立了拟议的估计方程式的无孔不入特性。我们还表明,估计方程式在当地效率高,在某些正常条件下达到影子变量模型的半参数性差效率。我们通过模拟和对房屋定价的实际数据应用来说明拟议的方法。