In this short paper, we study the simulation of a large system of stochastic processes subject to a common driving noise and fast mean-reverting stochastic volatilities. This model may be used to describe the firm values of a large pool of financial entities. We then seek an efficient estimator for the probability of a default, indicated by a firm value below a certain threshold, conditional on common factors. We consider approximations where coefficients containing the fast volatility are replaced by certain ergodic averages (a type of law of large numbers), and study a correction term (of central limit theorem-type). The accuracy of these approximations is assessed by numerical simulation of pathwise losses and the estimation of payoff functions as they appear in basket credit derivatives.
翻译:在这份简短的文件中,我们研究模拟大型的随机过程系统,但必须有一个共同的驱动噪音和快速平均反转的随机挥发性。这个模型可用于描述一大批金融实体的固定价值。然后,我们寻求一个高效的违约概率估算器,以低于某一阈值的固定价值为标志,并以共同因素为条件。我们考虑一些近似值,其中含有快速波动系数的系数被某些ergodic平均值(一种数量众多的法律类型)所取代,并研究一个修正术语(中央限值理论类型 ) 。 这些近似值的准确性是通过对路径性损失的数字模拟和对篮子信用衍生物中出现的支付功能的估计来评估的。