协同演化的时间序列出现在环境监测、金融分析、智能交通等众多应用中。本文旨在解决以下挑战:(1)如何加入时间序列的显性关系网络;(2)如何模拟时间动态的隐性关系。同时,作者提出了一个新的模型,称为张量时间序列网络,它由两个模块组成:张量图卷积网络(TGCN)和张量循环神经网络(TRNN)。TGCN通过将平面图的图卷积网络(GCN)泛化到张量图中来解决第一个挑战,它抓住了与张量相关的多个图之间的协同作用。TRNN利用张量分解来模拟共同演化的时间序列之间的隐性关系。在五个真实世界数据集上的实验结果证明了所提出的方法的有效性。
https://www.zhuanzhi.ai/paper/5e20a637eb1e0ed8aa9bb03dceecb198