Improving Multi-modal Large Language Models (MLLMs) in the post-training stage typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL), which require expensive and manually annotated multi-modal data--an ultimately unsustainable resource. This limitation has motivated a growing interest in unsupervised paradigms as a third stage of post-training after SFT and RL. While recent efforts have explored this direction, their methods are complex and difficult to iterate. To address this, we propose MM-UPT, a simple yet effective framework for unsupervised post-training of MLLMs, enabling continual self-improvement without any external supervision. The training method of MM-UPT builds upon GRPO, replacing traditional reward signals with a self-rewarding mechanism based on majority voting over multiple sampled responses. Our experiments demonstrate that such training method effectively improves the reasoning ability of Qwen2.5-VL-7B (e.g., 66.3\%$\rightarrow$72.9\% on MathVista, 62.9\%$\rightarrow$68.7\% on We-Math), using standard dataset without ground truth labels. To further explore scalability, we extend our framework to a data self-generation setting, designing two strategies that prompt the MLLM to synthesize new training samples on its own. Additional experiments show that combining these synthetic data with the unsupervised training method can also boost performance, highlighting a promising approach for scalable self-improvement. Overall, MM-UPT offers a new paradigm for autonomous enhancement of MLLMs, serving as a critical third step after initial SFT and RL in the absence of external supervision. Our code is available at https://github.com/waltonfuture/MM-UPT.
翻译:暂无翻译