We propose a cross-classification rule for the dependent and explanatory variables resulting in a contingency table such that the classical trinity of chi-square statistics can be used to check for conditional distribution specification. The resulting Pearson statistic is equal to the Lagrange multiplier statistic. We also provide a Chernoff-Lehmann result for the Pearson statistic using the raw data maximum likelihood estimator, which is applied to show that the corresponding limiting distribution of the Wald statistic does not depend on the number of parameters. The asymptotic distribution of the proposed statistics does not change when the grouping is data dependent. An algorithm allowing to control the number of observations per cell is developed. Monte Carlo experiments provide evidence of the excellent size accuracy of the proposed tests and their good power performance, compared to omnibus tests, in high dimensions.
翻译:我们为依赖性和解释性变量提出了一个跨分类规则,从而产生一个应急表,这样就能够使用典型的奇平方统计三元性来检查有条件的分布规格。由此得出的皮尔逊统计相当于拉格兰奇乘数统计。我们还利用原始数据最大可能性估测器为皮尔逊统计提供了切尔诺夫-莱曼结果,该估计器用来表明Wald统计的相应限制分布并不取决于参数数量。在数据组依存时,拟议统计数据的无序分布不会改变。一种算法可以控制每个细胞的观测数量。蒙特卡洛实验提供了证据,证明拟议测试的精度和与综合测试相比,其高容量的功率表现。