Goodness-of-fit tests are often used in data analysis to test the agreement of a model to a set of data. Out of the box tests that can target any proposed distribution model are only available in the univariate case. In this note I discuss how to build a goodness-of-fit test for arbitrary multivariate distributions or multivariate data generation models. The resulting tests perform an unbinned analysis and do not need any trials factor or look-elsewhere correction since the multivariate data can be analyzed all at once. The proposed distribution or generative model is used to transform the data to an uncorrelated space where the test is developed. Depending on the complexity of the model, it is possible to perform the transformation analytically or numerically with the help of a Normalizing Flow algorithm.
翻译:在数据分析中经常使用良好性测试来测试模型与一组数据集的一致性。在能够针对任何拟议分布模型的框中,只有单体体型测试才可用。在本说明中,我讨论了如何为任意的多变量分布或多变量数据生成模型建立良好性测试。由此产生的测试进行非混合分析,不需要任何试验系数或外观校正,因为可以同时对多变量数据进行全部分析。拟议的分布或基因模型用于将数据转换为开发测试的不相关空间。根据模型的复杂性,有可能在正常流动算法的帮助下,从分析或数字上进行转换。