The present contribution derives an explicit expression for (a version of) every uni- and multi-variate conditional distribution (i.e., Markov kernel) of Archimedean copulas and uses this representation to generalize a recently established result, saying that in the class of multivariate Archimedean copulas standard uniform convergence implies weak convergence of almost all univariate Markov kernels, to arbitrary multivariate Markov kernels. Moreover, we prove that an Archimedean copula is singular if, and only if, almost all uni- and multivariate Markov kernels are singular. These results are then applied to conditional Archimedean copulas which are reintroduced largely from a Markov kernel perspective and it is shown that convergence, singularity and conditional increasingness carry over from Archimedean copulas to their conditional copulas. As consequence the surprising fact is established that estimating (the generator of) an Archimedean copula directly yields an estimator of (the generator of) its conditional copula. Building upon that, we sketch the use and estimation of a conditional version of a recently introduced dependence measure as alternative to well-known conditional versions of association measures in order to study the dependence behaviour of Archimedean models when fixing covariate values.


翻译:目前的贡献明确体现了(一个版本)Archimeedean coupulas的每个单项和多项有条件分布(即Markov 内核),并用这一表述来概括最近形成的结果,指出在多变的Archimeedean conulas标准统一趋同类别中,几乎所有的单项和多变的Markov 内核都难以融合到任意的多变的Markov内核。此外,我们证明,如果而且只有几乎所有的单项和多变的Markov内核都是奇特的,而且只有几乎所有的单项和多变的马尔科夫内核核是奇特的。这些结果随后被应用于主要从Markov内核角度重新引入的有条件的Archimeede coula 。 这表明,几乎所有单项和有条件的内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内或内核内核内核内核内核内核内核内核内核内核内核内核内或内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内或内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Dimension-Free Empirical Entropy Estimation
Arxiv
0+阅读 · 2022年12月26日
Arxiv
0+阅读 · 2022年12月26日
Arxiv
0+阅读 · 2022年12月25日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员