The IEEE 802.11 MAC layer utilizes the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism for channel contention, but dense Wi-Fi deployments often cause high collision rates. To address this, this paper proposes an intelligent channel contention access mechanism that combines Federated Learning (FL) and Deep Deterministic Policy Gradient (DDPG) algorithms. We introduce a training pruning strategy and a weight aggregation algorithm to enhance model efficiency and reduce MAC delay. Using the NS3-AI framework, simulations show our method reduces average MAC delay by 25.24\% in static scenarios and outperforms A-FRL and DRL by 25.72\% and 45.9\% in dynamic environments, respectively.
翻译:暂无翻译