Traffic congestion is a persistent problem in our society. Existing methods for traffic control have proven futile in alleviating current congestion levels leading researchers to explore ideas with robot vehicles given the increased emergence of vehicles with different levels of autonomy on our roads. This gives rise to hybrid traffic control, where robot vehicles regulate human-driven vehicles, through reinforcement learning (RL). However, most existing studies use precise observations that involve global information, such as network throughput, as well as local information, such as vehicle positions and velocities. Obtaining this information requires updating existing road infrastructure with vast sensor networks and communication to potentially unwilling human drivers. We consider image observations as the alternative for hybrid traffic control via RL: 1) images are readily available through satellite imagery, in-car camera systems, and traffic monitoring systems; 2) Images do not require a complete re-imagination of the observation space from network to network; and 3) images only require communication to equipment. In this work, we show that robot vehicles using image observations can achieve similar performance to using precise information on networks, including ring, figure eight, merge, bottleneck, and intersections. We also demonstrate increased performance (up to 26%) in certain cases on tested networks, despite only using local traffic information as opposed to global traffic information.
翻译:现有的交通控制方法已经证明是徒劳无益的,以缓解目前的交通堵塞水平,使研究人员能够利用机器人车辆探索想法,因为我们公路上出现了不同程度的自治车辆。这导致了混合交通控制,机器人车辆通过强化学习管理人驱动车辆。然而,大多数现有研究使用精确的观测,涉及全球信息,如网络输送量,以及车辆位置和速度等地方信息。获得这一信息需要更新现有的道路基础设施,拥有庞大的传感器网络,通信给可能不愿意的人类司机。我们认为图像观测是混合交通控制的一种替代办法,通过RL:1)通过卫星图像、车内摄像系统和交通监测系统很容易获得图像;2)图像并不要求从网络到网络对观测空间进行彻底的重新规划;3)图像只需要通信设备。在这项工作中,我们显示,使用图像观测的机器人车辆可以达到类似的性能,使用网络上的准确信息,包括环、图8、合并、瓶盖和交叉路交。我们还表明,在某些案例中,尽管对信息进行了测试,但仅使用当地信息网络的运行情况与全球流量相比(高达26%)。