We present angle-uniform parallel coordinates, a data-independent technique that deforms the image plane of parallel coordinates so that the angles of linear relationships between two variables are linearly mapped along the horizontal axis of the parallel coordinates plot. Despite being a common method for visualizing multidimensional data, parallel coordinates are ineffective for revealing positive correlations since the associated parallel coordinates points of such structures may be located at infinity in the image plane and the asymmetric encoding of negative and positive correlations may lead to unreliable estimations. To address this issue, we introduce a transformation that bounds all points horizontally using an angle-uniform mapping and shrinks them vertically in a structure-preserving fashion; polygonal lines become smooth curves and a symmetric representation of data correlations is achieved. We further propose a combined subsampling and density visualization approach to reduce visual clutter caused by overdrawing. Our method enables accurate visual pattern interpretation of data correlations, and its data-independent nature makes it applicable to all multidimensional datasets. The usefulness of our method is demonstrated using examples of synthetic and real-world datasets.
翻译:我们提出了角度均匀的平行坐标系,这是一种数据独立的技术,它改变了平行坐标系的图像平面,使得两个变量之间的线性关系的角度沿着平行坐标系的水平轴线性映射。尽管平行坐标法是多维数据可视化的常用方法,但由于相关结构的相关平行坐标点可能位于图像平面的无穷远处,并且负相关和正相关的不对称编码可能导致不可靠估计,因此它对于揭示正相关性无效。为了解决这个问题,我们引入了一种变换,将所有点水平地限制在一个角度均匀的映射中,并以保持结构的方式在垂直方向上缩小它们;多边形线变成光滑的曲线,并实现了数据相关性的对称表示。我们进一步提出了一种结合子采样和密度可视化的方法来减少绘制过多的视觉混乱。我们的方法能够准确地解释数据相关性的视觉模式,并且其数据独立性使其适用于所有多维数据集。我们使用合成和真实世界数据集的示例演示了我们方法的有用性。