Distributed Learning often suffers from Byzantine failures, and there have been a number of works studying the problem of distributed stochastic optimization under Byzantine failures, where only a portion of workers, instead of all the workers in a distributed learning system, compute stochastic gradients at each iteration. These methods, albeit workable under Byzantine failures, have the shortcomings of either a sub-optimal convergence rate or high computation cost. To this end, we propose a new Byzantine-resilient stochastic gradient descent algorithm (BrSGD for short) which is provably robust against Byzantine failures. BrSGD obtains the optimal statistical performance and efficient computation simultaneously. In particular, BrSGD can achieve an order-optimal statistical error rate for strongly convex loss functions. The computation complexity of BrSGD is O(md), where d is the model dimension and m is the number of machines. Experimental results show that BrSGD can obtain competitive results compared with non-Byzantine machines in terms of effectiveness and convergence.


翻译:分布式学习常常受到拜占庭失败的困扰,一些研究拜占庭失败下分布式随机优化问题的工作,只有一部分工人,而不是分布式学习系统中的所有工人,在每次迭代中计算随机梯度。这些方法虽然在拜占庭失败下是可行的,但有亚最佳趋同率或高计算成本的缺陷。为此,我们提议采用新的拜占庭抗御型梯度脱底算法(BRSGD,短期),在对付拜占庭失败时,这种算法相当有力。只有一部分工人,而不是分布式学习系统中的所有工人,在每次迭代计算时都计算出蒸气梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度。特别是,布尔占庭可以同时达到一个对强共性损失功能的顺序最佳统计错误率。BRCD的计算复杂度为O(md),其中的模型尺寸为M(md),机器的数量为M(m)。实验结果显示,从有效性和汇合来看,BRCD可以取得与非Byzantine机器相比的竞争结果。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月12日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员