A new causal discovery method, Structural Agnostic Modeling (SAM), is presented in this paper. Leveraging both conditional independencies and distributional asymmetries, SAM aims to find the underlying causal structure from observational data. The approach is based on a game between different players estimating each variable distribution conditionally to the others as a neural net, and an adversary aimed at discriminating the generated data against the original data. A learning criterion combining distribution estimation, sparsity and acyclicity constraints is used to enforce the optimization of the graph structure and parameters through stochastic gradient descent. SAM is extensively experimentally validated on synthetic and real data.
翻译:本文介绍了一种新的因果发现方法,即结构性神学模型(SAM),利用有条件的依赖性和分布不对称性,SAM旨在从观察数据中找到内在因果结构,其基础是不同玩家之间的游戏,以有条件地将每种变量分布作为神经网,以及旨在将生成的数据与原始数据相区别的对立面。 使用将分布估计、宽度和周期性限制相结合的学习标准,通过随机梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度来优化图形结构和参数。 SAM对合成数据和真实数据进行了广泛的实验性验证。