This article discusses the employment of simultaneously transmitting and reflecting surface (STARS) for integrated sensing and communication (ISAC) networks. First, two fundamental configurations of STARS-enabled ISAC systems are introduced, namely integrated full-space configuration and separated half-space configuration, as well as their respective advantages and common challenges are identified. To address the aforementioned challenges, a novel sensing-at-STARS design is proposed, where the sensing functionality is achieved at the STARS instead of at the base station. Such a design significantly improves the echo signal energy by eliminating undesired echo energy attenuation/leakage, in addition to establishing favorable echo propagation paths to facilitate sensing information extraction. We also present three practical implementations for sensing-at-STARS, including separated elements, mode-selection elements, and power-splitting elements. Each implementation enables flexible sensing-communication tradeoffs. Numerical results are provided to demonstrate the superiority of the proposed STARS-enabled ISAC design. Finally, we discuss several future research directions.
翻译:暂无翻译