Simulating vision-based tactile sensors enables learning models for contact-rich tasks when collecting real world data at scale can be prohibitive. However, modeling the optical response of the gel deformation as well as incorporating the dynamics of the contact makes sim2real challenging. Prior works have explored data augmentation, fine-tuning, or learning generative models to reduce the sim2real gap. In this work, we present the first method to leverage probabilistic diffusion models for capturing complex illumination changes from gel deformations. Our tactile diffusion model is able to generate realistic tactile images from simulated contact depth bridging the reality gap for vision-based tactile sensing. On real braille reading task with a DIGIT sensor, a classifier trained with our diffusion model achieves 75.74% accuracy outperforming classifiers trained with simulation and other approaches. Project page: https://github.com/carolinahiguera/Tactile-Diffusion


翻译:模拟基于视觉的触觉传感器可以在收集现实世界数据成本高昂时学习具有接触感任务的模型。然而,对胶凝物变形的光学反应进行建模以及结合接触的动态使得从模拟到现实的转化具有挑战性。之前的研究探讨了数据增强、微调或学习生成模型以减少从模拟到现实的差距。在本文中,我们展示了第一个利用概率扩散模型捕捉胶凝物变形的复杂光照变化的方法。我们的触觉扩散模型能够从模拟的接触深度产生逼真的触觉图像,弥合了基于视觉的触觉传感器的现实差距。在与DIGIT传感器的实际盲文阅读任务中,用我们的扩散模型训练的分类器实现了75.74%的准确率,优于用模拟和其他方法训练的分类器。项目页面:https://github.com/carolinahiguera/Tactile-Diffusion

0
下载
关闭预览

相关内容

扩散模型是近年来快速发展并得到广泛关注的生成模型。它通过一系列的加噪和去噪过程,在复杂的图像分布和高斯分布之间建立联系,使得模型最终能将随机采样的高斯噪声逐步去噪得到一张图像。
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
7+阅读 · 2022年12月9日
专知会员服务
23+阅读 · 2021年9月5日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月23日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关VIP内容
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
7+阅读 · 2022年12月9日
专知会员服务
23+阅读 · 2021年9月5日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员