Millimeter-wave radars are being increasingly integrated into commercial vehicles to support new advanced driver-assistance systems by enabling robust and high-performance object detection, localization, as well as recognition - a key component of new environmental perception. In this paper, we propose a novel radar multiple-perspectives convolutional neural network (RAMP-CNN) that extracts the location and class of objects based on further processing of the range-velocity-angle (RVA) heatmap sequences. To bypass the complexity of 4D convolutional neural networks (NN), we propose to combine several lower-dimension NN models within our RAMP-CNN model that nonetheless approaches the performance upper-bound with lower complexity. The extensive experiments show that the proposed RAMP-CNN model achieves better average recall and average precision than prior works in all testing scenarios. Besides, the RAMP-CNN model is validated to work robustly under nighttime, which enables low-cost radars as a potential substitute for pure optical sensing under severe conditions.
翻译:正在越来越多地将毫米波雷达纳入商业车辆,以支持新的先进助运系统,办法是能够进行强力和高性能物体探测、定位和识别,这是新的环境观的一个关键组成部分。在本文件中,我们提议建立一个新型的雷达多透视神经系统网络(RAMP-CNN),在进一步处理射程速度角(RVA)热映射序列的基础上,提取物体的位置和种类。为了绕过4D进化神经网络的复杂性,我们提议将一些低度分解的NNN模型合并到我们的RAMP-CNN模型中,尽管这些模型接近性能的上限,但复杂性较低。广泛的实验表明,拟议的RAMP-CNN模型在所有测试情景中都比以往的工程得到更好的平均回溯和平均精确度。此外,RAMP-CNN模型经过验证后,可以在夜间进行强力工作,使低成本雷达能够在恶劣条件下作为纯光学感的替代物。