Robotic dexterous grasping is a key step toward human-like manipulation. To fully unleash the potential of data-driven models for dexterous grasping, a large-scale, high-quality dataset is essential. While gradient-based optimization offers a promising way for constructing such datasets, existing works suffer from limitations, such as restrictive assumptions in energy design or limited experiments on small object sets. Moreover, the lack of a standard benchmark for comparing synthesis methods and datasets hinders progress in this field. To address these challenges, we develop a highly efficient synthesis system and a comprehensive benchmark with MuJoCo for dexterous grasping. Our system formulates grasp synthesis as a bilevel optimization problem, combining a novel lower-level quadratic programming (QP) with an upper-level gradient descent process. By leveraging recent advances in CUDA-accelerated robotic libraries and GPU-based QP solvers, our system can parallelize thousands of grasps and synthesize over 49 grasps per second on a single NVIDIA 3090 GPU. Our synthesized grasps for Shadow Hand and Allegro Hand achieve a success rate above 75% in MuJoCo, with a penetration depth and contact distance of under 1 mm, outperforming existing baselines on nearly all metrics. Compared to the previous large-scale dataset, DexGraspNet, our dataset significantly improves the performance of learning models, with a simulation success rate from around 40% to 80%. Real-world testing of the trained model on the Shadow Hand achieves an 81% success rate across 20 diverse objects.
翻译:暂无翻译