There is increasing evidence suggesting neural networks' sensitivity to distribution shifts, so that research on out-of-distribution (OOD) generalization comes into the spotlight. Nonetheless, current endeavors mostly focus on Euclidean data, and its formulation for graph-structured data is not clear and remains under-explored, given two-fold fundamental challenges: 1) the inter-connection among nodes in one graph, which induces non-IID generation of data points even under the same environment, and 2) the structural information in the input graph, which is also informative for prediction. In this paper, we formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM), that facilitates graph neural networks to leverage invariance principles for prediction. EERM resorts to multiple context explorers (specified as graph structure editers in our case) that are adversarially trained to maximize the variance of risks from multiple virtual environments. Such a design enables the model to extrapolate from a single observed environment which is the common case for node-level prediction. We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution and further demonstrate its power on various real-world datasets for handling distribution shifts from artificial spurious features, cross-domain transfers and dynamic graph evolution.
翻译:越来越多的证据表明神经网络对分布变化的敏感度,因此,关于分配外(OOD)一般化的研究成为人们关注的焦点。然而,目前的努力主要侧重于Euclidean数据,而其图表结构化数据的配制并不明确,而且仍然未得到充分探讨,因为有两个基本挑战:(1) 在一个图中,节点之间的相互联系导致即使在同一个环境中也非IID生成数据点;(2) 输入图中的结构性信息,该图也为预测提供了信息。在本文中,我们在图表中提出了OOOD问题,并开发了一种新的不变化学习方法,即探索到外部的风险最小化(EERM),这有利于图形神经网络利用变化性原则进行预测。 ERM采用多种环境勘探者(在我们的例子中被指定为图形结构编辑者)进行对抗性培训,以尽量扩大多个虚拟环境中的风险差异。这种设计使得模型能够从一个观察到的环境下发展到外极化,这是一个常见的不透明水平的图形化预测的常见案例。我们用图式模型来证明其真实地展示其真实的动态变化趋势。