Ad-hoc team cooperation is the problem of cooperating with other players that have not been seen in the learning process. Recently, this problem has been considered in the context of Hanabi, which requires cooperation without explicit communication with the other players. While in self-play strategies cooperating on reinforcement learning (RL) process has shown success, there is the problem of failing to cooperate with other unseen agents after the initial learning is completed. In this paper, we categorize the results of ad-hoc team cooperation into Failure, Success, and Synergy and analyze the associated failures. First, we confirm that agents learning via RL converge to one strategy each, but not necessarily the same strategy and that these agents can deploy different strategies even though they utilize the same hyperparameters. Second, we confirm that the larger the behavioral difference, the more pronounced the failure of ad-hoc team cooperation, as demonstrated using hierarchical clustering and Pearson correlation. We confirm that such agents are grouped into distinctly different groups through hierarchical clustering, such that the correlation between behavioral differences and ad-hoc team performance is -0.978. Our results improve understanding of key factors to form successful ad-hoc team cooperation in multi-player games.


翻译:Ad-hoc团队合作是与其他在学习过程中没有看到的其他参与者合作的问题。最近,这个问题在Hanabi的背景下得到了考虑,这要求在没有与其他参与者进行明确沟通的情况下进行合作。在加强学习(RL)进程合作的自玩战略中,尽管在强化学习(RL)进程上表现出成功,但存在在初始学习完成后没有与其他无形代理人合作的问题。在本文件中,我们将特设团队合作的结果分为失败、成功和协同,并分析相关的失败。首先,我们确认通过RL学习的代理商每个学习一个战略,但不一定是同一个战略,这些代理商可以部署不同的战略,即使他们使用同样的超参数。第二,我们确认,行为差异越大,通过等级组合和Pearson相关关系表明,特设团队合作的失败就更明显了。我们确认,这些代理商通过等级组合分为截然不同的群体,因此行为差异和特设团队业绩之间的相互关系是-0.978。我们的结果提高了对成功形成多场游戏团队合作的关键因素的理解。</s>

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
105+阅读 · 2022年3月20日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月3日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
105+阅读 · 2022年3月20日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
17+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员