In this work, we address the task of SDR videos to HDR videos(SDRTV-to-HDRTV). Previous approaches use global feature modulation for SDRTV-to-HDRTV. Feature modulation scales and shifts the features in the original feature space, which has limited mapping capability. In addition, the global image mapping cannot restore detail in HDR frames due to the luminance differences in different regions of SDR frames. To resolve the appeal, we propose a two-stage solution. The first stage is a hierarchical Dynamic Context feature mapping (HDCFM) model. HDCFM learns the SDR frame to HDR frame mapping function via hierarchical feature modulation (HME and HM ) module and a dynamic context feature transformation (DCT) module. The HME estimates the feature modulation vector, HM is capable of hierarchical feature modulation, consisting of global feature modulation in series with local feature modulation, and is capable of adaptive mapping of local image features. The DCT module constructs a feature transformation module in conjunction with the context, which is capable of adaptively generating a feature transformation matrix for feature mapping. Compared with simple feature scaling and shifting, the DCT module can map features into a new feature space and thus has a more excellent feature mapping capability. In the second stage, we introduce a patch discriminator-based context generation model PDCG to obtain subjective quality enhancement of over-exposed regions. PDCG can solve the problem that the model is challenging to train due to the proportion of overexposed regions of the image. The proposed method can achieve state-of-the-art objective and subjective quality results. Specifically, HDCFM achieves a PSNR gain of 0.81 dB at a parameter of about 100K. The number of parameters is 1/14th of the previous state-of-the-art methods. The test code will be released soon.


翻译:在这项工作中,我们处理SDRDS视频(SDRTV-HDRTV-HDRTV)的SDR视频任务。以前的方法是使用SDRTV-HDRTV(SDRTV--HDRTV)的全球特征调制框架,并改变原始功能空间的特征,因为绘图能力有限。此外,由于SDR框架不同区域的亮度差异,全球图像映射无法恢复HDRDR框架的细节。为了解决这一呼吁,我们建议了两个阶段的解决办法。第一阶段是等级动态环境特征定位环境特征绘图(HDCFM)模型。HDCFM通过S级特征调制(HME和HM)模块学习SDRDFD框架绘图功能。HME调控模块和动态环境特征变换(DC)模块)的功能。HDMD-DDDDDDFD模型的升级模型可以超越当前环境,我们可以很快将HDDG的特性转换成一个功能升级模型,因此可以将SMMMS的模型升级成一个基础。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员