In this paper, we propose two methods for tackling the problem of cross-device matching for online advertising at CIKM Cup 2016. The first method considers the matching problem as a binary classification task and solve it by utilizing ensemble learning techniques. The second method defines the matching problem as a ranking task and effectively solve it with using learning-to-rank algorithms. The results show that the proposed methods obtain promising results, in which the ranking-based method outperforms the classification-based method for the task.
翻译:在本文中,我们提出了两种方法来解决2016年CIKM杯网上广告的交叉设备匹配问题。第一种方法将匹配问题视为二进制分类任务,并通过使用共同学习技术加以解决。第二种方法将匹配问题定义为排序任务,并通过使用学习到排序算法有效解决这一问题。结果显示,拟议方法取得了大有希望的结果,在这种基础上,排名法优于基于分类的方法。