In non-truthful auctions, agents' utility for a strategy depends on the strategies of the opponents and also the prior distribution over their private types; the set of Bayes Nash equilibria generally has an intricate dependence on the prior. Using the First Price Auction as our main demonstrating example, we show that $\tilde O(n / \epsilon^2)$ samples from the prior with $n$ agents suffice for an algorithm to learn the interim utilities for all monotone bidding strategies. As a consequence, this number of samples suffice for learning all approximate equilibria. We give almost matching (up to polylog factors) lower bound on the sample complexity for learning utilities. We also consider a setting where agents must pay a search cost to discover their own types. Drawing on a connection between this setting and the first price auction, discovered recently by Kleinberg et al. (2016), we show that $\tilde O(n / \epsilon^2)$ samples suffice for utilities and equilibria to be estimated in a near welfare-optimal descending auction in this setting. En route, we improve the sample complexity bound, recently obtained by Guo et al. (2021), for the Pandora's Box problem, which is a classical model for sequential consumer search.
翻译:在非真实的拍卖中,代理商对战略的效用取决于对手的策略,也取决于其私人类型的先前分布;Bayes Nash 集的平衡性一般对前者的复杂依赖。我们用第一次价格拍卖作为我们的主要示范实例,我们表明,在以前使用美元代理商的样本中,美元对前者的美元样本足以算算法学习所有单调投标战略的临时公用事业。因此,这批样本数量足以学习所有近乎平衡的平衡性。我们给学习公用事业抽样复杂性的比对(多式因素)几乎设定得更低。我们还考虑一个让代理商必须支付搜索成本以发现其自身类型的设定。我们利用这一设置与最近克莱恩伯格等人(2016年)发现的第一次价格拍卖之间的联系,我们显示,美元Tillde O (n/\ epsilon%2) 的样本足以满足公用事业和quilibrial的需要,在这种环境下,在接近福利-优化的下级拍卖中,我们几乎给出了(多式因素因素) 。在这条路线上,我们改进了典型消费者的样本复杂性(20年) 和连续的底箱问题。