Despite its fruitful applications in remote sensing, image super-resolution is troublesome to train and deploy as it handles different resolution magnifications with separate models. Accordingly, we propose a highly-applicable super-resolution framework called FunSR, which settles different magnifications with a unified model by exploiting context interaction within implicit function space. FunSR composes a functional representor, a functional interactor, and a functional parser. Specifically, the representor transforms the low-resolution image from Euclidean space to multi-scale pixel-wise function maps; the interactor enables pixel-wise function expression with global dependencies; and the parser, which is parameterized by the interactor's output, converts the discrete coordinates with additional attributes to RGB values. Extensive experimental results demonstrate that FunSR reports state-of-the-art performance on both fixed-magnification and continuous-magnification settings, meanwhile, it provides many friendly applications thanks to its unified nature.
翻译:图像超分辨率尽管在遥感中具有富有成效的应用,但在用不同的模型处理不同分辨率放大时,培训和部署的图像超分辨率是困难的。 因此,我们建议了一个高度适用的超级分辨率框架,叫做FunSR,它通过在隐含功能空间内利用上下文互动,以统一模型解决不同的放大。 FunSR是一个功能代表器、功能互动器和一个功能分析器。 具体地说,该代表器将低分辨率图像从欧克利德纳空间转换成多尺度像素功能图; 互动器能够让全球依赖者使用像素功能表达法; 以及由互动器输出参数参数参数参数测定的分立坐标,将其他属性转换为 RGB 值。 广泛的实验结果表明, 富耐SR 报告固定放大和连续放大环境的状态性能,同时由于它的统一性,它提供了许多友好的应用。