Correlated time series (CTS) forecasting plays an essential role in many practical applications, such as traffic management and server load control. Many deep learning models have been proposed to improve the accuracy of CTS forecasting. However, while models have become increasingly complex and computationally intensive, they struggle to improve accuracy. Pursuing a different direction, this study aims instead to enable much more efficient, lightweight models that preserve accuracy while being able to be deployed on resource-constrained devices. To achieve this goal, we characterize popular CTS forecasting models and yield two observations that indicate directions for lightweight CTS forecasting. On this basis, we propose the LightCTS framework that adopts plain stacking of temporal and spatial operators instead of alternate stacking that is much more computationally expensive. Moreover, LightCTS features light temporal and spatial operator modules, called L-TCN and GL-Former, that offer improved computational efficiency without compromising their feature extraction capabilities. LightCTS also encompasses a last-shot compression scheme to reduce redundant temporal features and speed up subsequent computations. Experiments with single-step and multi-step forecasting benchmark datasets show that LightCTS is capable of nearly state-of-the-art accuracy at much reduced computational and storage overheads.


翻译:与相关时序(CTS)的预测在许多实际应用(如交通管理和服务器负荷控制)中发挥着必不可少的作用。许多深层次的学习模型已经提出来提高CTS预测的准确性。但是,虽然模型变得越来越复杂和计算密集,但是它们却在努力提高准确性。追求不同的方向,本研究的目的却是为了促成更高效、更轻的模型,既保持准确性,又能够部署在受资源限制的设备上。为了实现这一目标,我们将流行的CTS预测模型定性为流行的CTS预测模型,并产生两点观测,以显示轻度的CTS预报方向。在此基础上,我们提议采用光度堆放时间和空间操作器的框架,而不是计算成本更高的其他堆放器。此外,L-TCN和GL-Former的光时空操作器模块具有光度和空间操作器操作器特性,这些模块提供了更高的计算效率,同时又不降低其特征提取能力。L-TCTS还包含最后的压缩计划,以减少冗余时间特征并加快随后的计算速度。基于单步和多步基准数据集的实验显示,在存储时序上几乎降低了中测空的中。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员